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Abstract

In a metric space and for a bounded subset of the Kuratowski measure of non-compactness is
defined as Here denotes the diameter of a set , i.e., Another important measure of non-compactness is the
so-called Hausdorff (or ball) measure of non-compactness defined as Since a ball of radius has diameter at
most , then the measures - and are equivalent i.e., for any bounded subset of the following estimate holds.
Here we recall the well known fixed point theorem of Darbo [1]. The first measure of non-compactness
was defined by Kuratowski.[1]
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Introduction:

Recently, there have been several successful efforts to apply the concept of measure of no
compactness in the study of the existence and behavior of solutions of nonlinear differential and integral
equations. In , we present and prove some new existence theorems for solutions of systems of nonlinear
equations which are formulated in terms of condensing operators in Banach spaces (i.e. mappings under
which the image of any set is in a certain sense more compact than the set itself [8]). Moreover, as an
application, we study the problem of existence of solutions for the following system of nonlinear integral

equation:

B1(t)
x(t) = fi (trx(ﬁ(t)):)’(ﬁ(t)):j I1 (t: S,X(m(S)),y(m(S))) d5>
N €y,
B2(t)
ky(t) =/ (t:x((z (t))rY((z (t)) j 92 (t: S:X(Uz(s))')’(nz(s))) d5>
0

where f;, g;, &, n; and ; satisfy certain condition

We some basic notations, definitions and auxiliary devoted to state and prove some existence
theorems for systems of equations involving condensing operators using the Darbo fixed point theorem.
Finally, using the obtained results, we investigate the problem of existence of solutions for the system of
nonlinear integral equation (1).

The first measure of noncompactness was defined by Kuratowski [1]. In a metric space X and

for a bounded subset S of X the Kuratowski measure of noncompactness is defined as

n
S= U S;for some S;with diam(S;) <8 for1l=i<n<oo;. (2)

i=1
Here diam(T) denotes the diameter of aset T c X, i.e.,
diam (T) := sup{d(x,y)|x,y € T}.

Another important measure of honcompactness is the so-called Hausdorff (or ball) measure of

a(s) = inf{cS >0

noncompactness defined as

x(X) = inf{e: X has a finite € — netin E}.

Since a ball of radius r has diameter at most 2r, then the measures y and « are equivalent i.e., for
any bounded subset X of E the following estimate holds:

xX) < aX) < 2x(X).

The two measures y and @ share many properties [8, 5]. Here, we recall some basic facts
concerning measures of noncompactness from [5], which is defined axiomatically in terms of some natural

conditions. Denote by R the set of real numbers and put R, = [0, +o0). Let (E, Il.1I) be a Banach space.
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The symbol X, ConvX will denote the closure and closed convex hull of a subset X of E, respectively.
Moreover, let Mt indicate the family of all nonempty and bounded subsets of E and 9t indicate the family
of all nonempty and relatively compact subsets.
Definition (1)[3]: A mapping u: MVt — R, is said to be a measure of noncompactness in E if it satisfies
the following conditions:
()The family kerp = {X € My: u(X) = 0} is nonempty and kery S N;.
(i) XcY =X <)

(iil) u(X) = p(X).
(iv) u(ConvX) = u(X).

MpAX+ A - <)+ @ —2)u(y) for 1€ [0,1].
(vi) If {X,} g is a sequence of closed sets from M such that X,,., c X, for n=1,2,... and if
lim,,,ou(X,) = 0 then X, = N, X, = @.
Here we recall the well known fixed point theorem of Darbo [1].
Theorem (1) [3]: [1] Let Q be a nonempty, bounded, closed and convex subset of a space E and let F: Q —
Q be a continuous mapping such that there exists a constant k € [0,1) with the property

p(FX) < ku(X)
for any nonempty subset X of Q. Then F has a fixed point in the set Q.

The following theorem and example are basic to prove all the results of this work.
Theorem (2): [5] Suppose pq, Uy, ..., Uy are measures in Ey, E,, ..., E, , respectively. Moreover, assume
that the function F: Rt — R, is convex and F(x;,...x,) = 0 ifandonly if x; = 0 fori = 1,2, ...,n. Then
w0 = F (i (X0, 1(X), -, 1 (X))

defines a measure of noncompactness in E; X E, X ... X E,, where X; denotes the natural

projection of X into E; fori = 1,2, ..., n.
As results from Theorem (.2) we present the following example.

Example (1) : [12] Let 4 be a measure of noncompactness, considering F;(x,y) = max {x,y} and
F,(x,y) = x + y forany (x,y) € RZ then all the conditions of Theorem (2) are satisfied. Therefore, i, =
max {u(Xy), u(X;)}and i, = u(X;) + u(X,) ) are measures of noncompactness in the space E X E
where X;, i = 1,2 denote the natural projections of X.

we state and prove some existence results for solutions of systems of equations involving

condensing operators in Banach spaces which will be used.
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Theorem (3) [10]: Let C be a nonempty, bounded and closed subset of a Banach space E and u an arbitrary
measure of noncompactness on E. If f;: C X C — C for i = 1,2 are continuous operators and there exists a
constant k € [0,1) such that
#(Fi(X1 X Xz)) < kmax{u(X,), u(X2)} (3)
for any subset X;, X, of C, then there exist x*, y* € X such that
{Fl(x*.y*) =x",
F(x"y) =y"
Proof: Consider the operator F: C x C — C X C defined by
F(XJ’) = (F1(x:J’); Fz(x'Y))-

Example (2) shows that 7(X) = max{u(X;), u(X,)} is a measure of noncompactness in the space

(4)

C x C,where X;,i = 1,2 denote the natural projections of X. Now let X be any nonempty subset of X;,i =
1,2. Then by (ii) and (3) we obtain

A(F(O) < A(F (X % X)X (X X X,))

= max{u( F,(X; X X5)), n(F, (X1 X X))}
< max {k max {u(X,), u(X2)}, k max {u(X), u(X,1)}
< ki(X)
Since /i is also a measure of noncompactness, therefore all conditions of Theorem (.3) are
satisfied. Hence F has a fixed point, i.e., there exist x*, y* € X such that
(', y") = F(x',y?) = (Fi(x", y), Fa(x",y9),
which means (x*, y*) solves (28).
Corollary (1.) [7]: Let C be a nonempty, bounded and closed subset of a Banach space E and an arbitrary
measure of noncompactness on E. If F;: C X C — C fori = 1,2 are continuous operators for which there
exist nonnegative constants k4, k, with k; + k, < 1 such that
w(Fi(Xy X X)) < kapu(Xy) + kope(X5) ®)
for any subsets k4, k, of C, then there exist x*, y* € X such that
{Fl(x*,y*) =x",
F(x%y") = y".
Proof: It is enough to show that (27) holds. Let k,, k, S C be given, then
u(Fi (X1 X X3)) < kau(Xy) + kop(Xz)
< ky max{u(Xy), u(Xz)} + ko max{u(Xy), u(X2)}
< (kq + ky) max{u(X,), u(X,)}
Now the conclusion follows from Theorem (3).
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Definition (2) [15]: [28] An element (x,y)X x X is called a coupled fixed point of the mapping
F: XXX ->XIifF (x,y) = xand F (y,x) = y.

Note that if F: C x C — C is a continuous operator and we define F;(x,y) = F(x y) and F,(x,y) =
F(x y) then as a result of Theorem (1.3.5) and Corollary (1.3.6) we have the main results of [22].
Corollary (2) [15]: Let C be a nonempty, bounded and closed subset of a Banach space E, u an arbitrary
measure of noncompactness on E and F: C x € — C a continuous operator. Suppose either:

(1) There exist nonnegative constants k4, k, with k;, k, < 1 such that
u(F Xy X X5)) < kqp(Xy) + kpu(Xy),

or

(I1') There exists a constant k € [0,1) such that

.U(F(X1 X Xz)) < kmax{u(Xy), u(X2)}

for any subset X;, X, of C. Then F has a coupled fixed point.
Proof: Take F;(x,y) = F,(x,y) = F(x y) in Theorem (3) and Corollary (2).
Corollary (3) [11]: Let C be a nonempty, bounded, closed and convex subset of a Banach space E and let
F;:C x C — E fori = 1,2 be operators such that

IF:Cx, y) — Fi(w, v)|| < kmax{llx —ull, [ly — v}, (6)
where k € [0,1) . Assume that G;: C X C — X are compact and continuous operators and the operators
T;: C x C - C defined by

IT:Cx, y) = Ti(w, W < IFi(x, ) — Fi(w, v)Il + @1G; (x, ¥) — G:(w, v) D) (7)

fori =1,2where ®:R, — R, is a nondecreasing continuous function and ®(0) = 0. Then there exist
x*,y* € C such that

{Tl(x*,y*) =x",

T,(x%y ) =y"
Proof: Let X; and X, be arbitrary subsets of C and fixed 1 <i < 2. By the definition of Kuratowski
measure of noncompactness for every e > 0 there exist Sy, ..., S,, such that X; x X, € UL S,

diam (F;(S)) < a(F;(X; X X;) + ¢
and

diam (G;(S))) < e.
Let us fix arbitrarily 1 < k < n. Then for every p,q € S; we have

I7: (@) = Ti( @l < IIF;(p) — F(@Il + ®(1G;(p) — G:(@)D.
Thus, by properties of ® we obtain
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diam (T;(S,)) < diam (F(5,)) + @ (diam (G;(50))).
diam (T;(S)) < a(F;(X; X X5)) + € + ®(&)

and since & was chosen arbitrarily and @ is a nondecreasing continuous function, so

a(T;(Xy X X5)) < a(Fi(Xy X X3)). (8)
Now we show that T; satifies (3). To do this fix arbitrary x,y € X; and u,v € X, . Then we have

IFi(x,y) — Fi(w, v)|| < k max{|lx — ull, lly — v}

< k max{diamX; , diamX,}

S0

diam (F;(X; X X,) < k max{diamX, , diamX,}
Therefore, by definition of Kuratowski measure of noncompactness we have

o (F;(X; X X3) < kmax{a(X;),a(Xz)} ©)]
By (32) and (33) we deduce

a(T;(Xy X X5)) < kmax{a(Xy) , a(X,)}.
Also, by conditon (31), T; (i = 1,2) are continuous operators and the application of Theorem (1.3.5)
completes the proof.
In the same way as the above proof, we can extend Theorem (1.3.5) for n-dimensional systems of
equations.
Theorem (4) [15]: Let C be a nonempty, bounded and closed subset of a Banach space E and u an arbitrary
measure of noncompactness on E. If F;: C™ - C,i =1, ...,n are continuous operators for which there
exists a constant k € [0,1) such that

u(Fl-(X1 X .. X Xz)) < kmax{u(X,), ..., u(X;)}
for any subset X, ..., X,, of C. Then there exist x7 , ..., x;; € X such that

Fl(xI’---!x‘:l) = xik

Fu(xi, o xn)  xp,
Proof: Define F(xy, ..., x,) = (Fi(xy, ..., %), -, By (4, ..., x,,)) and follow the proof of Theorem (1.3.5).
as an application of Theorem (1.3.5), we prove an existence result for solutions of system(1). We will work
in the Banach space BC(R,) consisting of all real functions defined, bounded and continuous on R,. The
space BCIR,) is furnished with the standard supremum norm i.e., the norm defined by the formula
llx|l = sup{lx(©)|: t = 0}.
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We will use a measure of noncompactness in the space BC (R,.) which is stated in ([8,9]). In order to define
this measure, let us fix a nonempty bounded subset of X of BC(RR,) and a positive number L > 0. For x €
X and & > 0 denote by w” (x, €), the modulus of continuity of x on the interval [0, L], i.e,
wk(x, &) = sup{|x(t) — x(s)|:t,s € [0,L], [t — s| = €}.
Moreover, let us put
w(X, &) = sup{w’(x, €): x € X}
wi(X) = 1£i_I)T3wL(X, €),
wo(X) = gl_)r?o wg(X).
If tis a fixed number from R, let us denote
X(t) ={x():x € X}.
Finally, consider the function u defined on Mg (g, by the formula

u(X) = wy(X) + lim sup diam X(t).
t—>oo

Where

daim X (t) = sup{|x(t) —y@®)|: x,y € X}.
It can be shown (cf. [5,16]) that the function u(X) defines a measure of noncompactness on BC (R,) in the
sense of the above accepted definition.

Now, we are ready to state and prove the main on the existence of solutions for the system of integral
equations (25).
Theorem (5) [15]: Assume that the following conditions are satisfied:
(i) &,mi, Bi: Ry —» R,.(i = 1,2) are continuous and &;(t)1 » o ast — o fori =1,2,
(i) i Ry x RxRXxR - Rfori = 1,2 are continuous. Moreover, there exist constant k € 0,1) and
nondecreasing continuous functions @;: R, —» R, with ®;(0) = 0,i = 1,2, such that
Ifi(t, x,y,2) — fi(t, u, v, w)]
< kmax{lx —ul, |y —v[} + ®;(m;(®)|z — w|) (10)

where m;(t): R, — R, are continuous functions.
(iii) The functions |f; (t,0,0,0)| for i = ,2 are bounded on R, i.e.

M; = sup{f;(t,0,0,0):t € R,} < oo. (12)
(iv)gi R, xR, x Rx R — Rfori = 1,2are continuous and there exists a positive constant D such

that
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sup(m,0) || " g0 (65,2 (05)), y(5))) s
te R+'x'y<izBC(R+)'} <D. (12)
Morever, :
lim m, (6) f g [9: (t.5,x(1:)), y(1:())) = g (&5, u(ni (), v(mi(s)) ) s

=0 (13)
uniformly with respect to x, y, u, vBC(R,) fori = 1,2.

Then the system of equations (1) has at least one solution in the space BC(R,) x BC(R,)
Proof: The proof is carried out in two steps.

Step 1: G;: BC(R,) X BC(R,) = BC(R,) defined by

Bi(®)
GO =m@ [ g1 (652 y(n())) ds (14)
0

fori = 1,2 are compact and continuous operators.

Let 1 < i < 2 be fixed. Notice that the continuity of G; (x,y)(t) forany x € BC(R,) X BC(R,) is
obvious. Moreover, by (12), G; is an operator on BC(R,) X BC(R,) into BC(R,). Now, we show that G;
is continuous. For this, take x,y € BC(R,) and € > 0 arbitrarily, and consider u,v € BC(R,) with || x —

ull<eand |l v—y |l < &. Then we have

Bi(®)
6 ® - GOl <m@|[ g (65,50162) () ds
0

Bi(t)
m© [ g (65,u(n (), v(())) ds
0

foﬁi(t) |9: (5. x(:(), ¥ (n:(5)))
—9; (t» s, u(1:(5)), U(m(s))) ds| .

Furthermore, considering condition (iv), there exists T > 0 such that for t > T we have

1G:(x, ) (®) — Gi(w,v)(D)| < . (15)
Also, if t € [0, T |, then from (39) it follows that

1G;(x, Y) (@) — Gi(w, v)(O)| < mpPrI(e),

< m;(t)

where
Br = sup{B;(t):t €[0,T],1 <i<?2}
my = sup{m;(t):t € [0,T],1 <i<2}
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b = max{||x|l, lIy|l} + ¢
9(e) = sup{lgi(t,s,x,y) — gi(t,s,u,v)|:t € [0, T],s € [0, Br],
X, y,uv,€[-bbl|x—u|<ely—v|<e}
By using the continuity of g; on the compact set [0,T ] X [0, B7] X [— b, b] X [— b, b], we have I(g) —
0; as € = 0. Thus, G; is a continuous function from BC(R,) X BC(R,) into BC(R,).
Now, Let X;, X, be two nonempty and bounded subsets of BC(R,.), and assume that T > 0 and € > 0

are chosen arbitrarily. Let ¢;,t, € [0,T], with |[t, — t;| < €and x,y € X, we obtain

G (x, y)(t2) — G (u, v) (8] <

<

Bi(tz)
mi(tl)f 9i (tz's'x(m(s));Y(ﬂi(S))) ds
0

Bi(t1)
_mi(tz)f gi (tpsxx(’?i(s))'Y(’?i(S))) ds
0

<mr

foﬁi(tZ) [gi (tz' 5, x(n:(s)), y(n,-(s)))

—3gi (t1.S,x(m(S)),y(m(s)))] ds| (16)
Bi(t2)

j ) 9i (tl'S'x(Ui(S));}’(Ui(S))) ds

Pi(t1

< mpBrwy (g, €) + mpUl 0" (B, €),

+mr

where
r = max{sup{llx|| : x € X1}, sup{llx|| : x € X,},}

o (B, &) = {IBi(t) — Bi(t)|: 1, t; € [0, T] |ty — t5] < &}
oy (g &) = sup{lgi(ta,s,%,) — gi(ty, s, , 0| ty,t, € [0,TL It — ty| < €

x,y € [-r,r]l,s €[0,B]}

Uy = sup{lgi(t,s,x,y)|:t € [0, T],s € [0,Br],x,y € [-1, 7]}
Since (x,y) was an arbitrary element of X; x X, in (40), so we obtain

w"(G;(Xy X X3), &) < mpBrwf (gs,€) + mpUfw" (B, €) 17)
On the other hand by the uniform continuity of g; on [0,T ] X [0,B7] X [— 7, 7] X [—7,7] , we have
wl(g;,€) >0, as e > 0 and also because of the uniform continuity of g on [0,T ], we derive that
wl(B,€) - 0as & - 0. Therefore we obtain

myBrwy (gi, &) + mpUf 0" (B;, €) = 0,

as € - Oand
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(’Jg(Gi(X1 X Xz)) =0,
therefore
wo(Gi(X; X X3)) = 0. (18)
Finally, for arbitrary (x,y), (u,v) € X; X X,and t € R, we get

|Gi(x,J’)(t) - Gi(u' U)(t)l <
< m;(t)

foﬁi(t) [gi (t,s,x(ni(S)),y(m(s)))

—g: (&5, u(ni()), v(n:()))] ds| (19)
< m;(£)6;(0),

where

6;(t) = sup {Ufi(t) [gi (t, s,x(m(s)),y(ni(s)))

—g; (t, s,u(ni(s)),v(ni(s)))] ds| :x,y,u,v € BC(R,)}

Since (x,y), (u, v) and t were chosen arbitrarily in (19), we conclude that

diam G;(X; X X,)(t) <m(t)6(t) . (20)
Taking t — oo in the inequality (44), then using (iv) we deduce that
lim sup diam G;(X; x X,)(t) = 0. 21D
t—oo

Further, combining (42) and (45) we get
lim sup diam G;(X; X X;)(t) + wo(G;(X; X X;)) =0

t—oo

or, equivalently
u(G;(X; x X)) = 0.
Thus, G; is a compact and continuous operator.

Step 2: There exists r, € R, such that the operators T: B, X B,, — By, (i = 1,2) defined by

B(®)
Ti(x, y)(8) = f; (t,x(f(t)),J/(f(t))J gi(t, s,x(n(S)).Y(n(S))dS)> (22)
0

are well defined and satisfy condition (31) where G; is given by (38) and
Fi(x,y)(8) = k max{x(¢t), y(x)},

fori = 1,2.

Using conditions (i)-(iv), for arbitrarily fixed t € R, andi = 1,2 we get
IT: (e, Y) (O] <
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<

Bi(t)
fi (t' x(fi(t))v }’(fl(t)) ’ J- gi(t! S, x(ni(s))! 3’(771(5))515) - fi(t: 0:0:0)
+|f:(¢,0,0,0)|
< ke max{]x(&(®)|, [y (&:©)[} + I£i(£,0,0,0)]

Bi()
+; (mi(t) f 9: (6,5, x(n:(5)), ¥(ni(s)) ) ds )
0
< kmax{|lx|l, Iyll} + M; + &;(D), (23)
therefore,
IT: Ce, I < ke max{llx|l, Iyll} + M; + ®:(D) . (24)

Thus, from the estimate (48) we have T;(B,, x B,,) S B,, for
M, +®,(D) M, + CDz(D)}

rﬁmax{ 1-k ' 1-k
Next, by condition (ii) of Theorem (1.3.11), it is obvious that F; and F;(x) for x € BC(R,) are
continuous functions on BC(R,) and R, respectively, and fori = 1,2,x,y,u,v € BC(R,) and t € R,

we have
IT; C, y) (&) — Ty (w, v) (8)| =

fi (t:x(fi(t))IY(fi(t))'Joﬁi(t) 9i (t' S,X(m(S)),y(m(S))dS))

—fi (tu(E®) vE®), f ", (:5,u(n:(5)), v(ni(s))ds))

< kmax{|x() —u@)|, ly@®) —v(®)|}

Bi(t)
L gi (t' S'x(ni(s)),y(m(s))) ds

+o (mi(t)

Bi(®)
_jo gi (t,s,u(m(S)),v(ni(s)))ds >

< R (o y)(©) — Fi(w, v) (O] + @G (x, y) () — Gi(w, v) (D))
< |Fi(x, y) = Fi(u, v)[ + ®()1G;(x, y) (©) = G;(w, v)(®)])

therefore,

IT:(x, y) = Ty, )| < |IF;(x,y) = Fi(w, v) || + @(/1G; (x, y) = Gy (u, v)ID.
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Obviously, F; satisfies condition (30) and thus by Corollary (2), there exist x,, y, € BC(R,) that
are solutions of the system of integral equations (1), and the proof is complete.

In the same way as the above proof, we can extend Theorem (4) for finite system of nonlinear
integral equation

x(8) = fi(t, %, (&), o %0 (& (D)),
Bi(t)
[ ai(osm @) xaln)) ds)
0

where f;, g;, {;, n; and B; satisfy certain conditions. As a corollary of Theorem (4) we have the main
results of [3].
Corollary (4)]: [5] Suppose that (i) f: R, X R x R = R is continuous and the function t — f (¢,0,0) isa
member of the space BC(R,);
(i) there exists k € [0,1) such that

k
If (&%, y) = ftwv)l <5 (x = vl + 1y — v, (25)

forany t > 0 and forall x,y,u,v € R;

(iii) the functions ¢,n, q: R, — R, are continuous and {(t) = o ast — oo.

(iv)h: Ry X Ry X Rx R — R isacontinuous function and there exist x,, y, € R and a positive constant
d such that

q(t)
f IA(t, 5,79, y0)| ds < d 26)
0

for all t € R,. In addition,

q@®)
lim i |h (t, s,x(n(s)),y(n(s))) —h (t, s,u(n(s)),v(n(s))| ds =0 (27)

t—oo

q(t)
J; |h (t, s,x(n(s)),y(n(s))) —h (t, s,u(n(s)), v(n(s))| ds <o (28)

for any all t € R, and uniformly respect to x, y, u, vBC € (R,):

Then the system of equations

q(t)
0

¥ = £ (xEO)YEO)) + [ k(65 2(00).y(r5)) s,

q(t)
y(® = f (£y(E®),x(E®)) + f h(t5,y(n()).x(n(s))) ds, (29)

has at least one solution in the space BC(R,) X BC(R,) .
Proof: Take
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At xy,2) = ft,x,y) + 2

f(tx,y,2) = f(t,y,x) + 2,

91(t,s,x,y) = h(t,s,x,y),

92(t,s,x,y) = h(t,s,y,x),
in Theorem (2).

Now, we give an example where Theorem (2) can be applied but the previous results [3] are not
applicable.
Example (3) [13]: Consider the system of integral equations

[ 2O +r@) | (o (x0) e (245 (() + ()
2(1 +t%) 0 ot? (2 + sin (ﬂ(\/}) " y4(\/§)))

sin (tz(x(t) + y(t))) VEST+ sy(s) + tsM1(1 + x%(s) + y*(s))
| YO="%a+® +arCtanfo A+ )1 +x4(0) +y* (1)

ds (54)

’

where t € [00).

Eq. (54) is a special case of Eq. (25) where
G =5@) =n,) =t, Bi(t) =t%B,[t) = (&) = Vs

t2(x +y)
f1(t,x,y,2) = m Z,
sin( t2(x +
f2(t,x,y,2) = H + arctan z,
s3cos(sx) + e5(2 + sin(x* + y4))
91(f,5:xJ’)= 2 . 4 4
e t?(2 + sin(x* + y*))
Y1+ sy +tst(1 +x* +y*h)
gl(t,s;x,}’) =

A+t)A +x*+y4)
Now we check all conditions of Theorem(4). It is clear that condition (i) is satisfied. Assume that
t e R, and x,y,z,u,v,w € R. Then we get

t? Ix—ul+ly—vl

Ifl(t,X,y,Z)_fl(t,u,U,W)lS1+t4 2 +|Z_W|

N| =

<-max{|lx —u|+|y—v|}+ |z —w|

and

https://scopmajd.com/ « ISI: (0.360) « ISSN (Online): 3005-2033
14


https://scopmajd.com/

2024 AU O gils (2) alaall (2) 2aad) 5 shiiall daalad) 2aall dlaa .

IE@%%@—E@MMWNSMMt%&Z;;_wﬂ

+|arctan(z) — arctan(w)|
< gmax{lx —ul,ly = vl} + |z — w]

Therefore f; and f, satisfy condition (ii) of Theorem (1.3.11) with k = % Also it is clear that f; and g;

are continuous and by simple calculation we obtain that

t2(0 + 0)
M1=SUp m+0:tER+ =0,

B sin(t2(0 + 0))
M, = Sup{ 2(1 +t%

steos (sx(45) +¢* (2 4.0 (+*65) + ' O9))| 1524 202
et (2 + sin (x‘*(\/E) + y‘*(\/E))) T et

f‘/f 1+ sx(s) + ts™(1 4+ x*(t) + y*(s)) ‘ 1

+O:tElR+}=O

’

o A+ (L + x40 + () T 12
2s3
|91 (t: S:X(m(s)):Y(Th(S))) — 01 (t' 5:“(’71(5)): V(U1(5)))| < 67
2(1+5s)

|92 (&5, x(12()), ¥(12(5)) ) = g2 (&5, u(12(5)), v(n2(5)) )| < Y
Thus, D < oo and we have

Bi(®)
fo 9: (6,5,x(1:()), y(1:(5))) = g (&5, u(m:()), v(m:(5))) ds| = 0

lim
t—>oo

Therefore, as a result of Theorem (4), the system of integral equations (30) has at least one solution

in the space BC(R,) X BC(R,).
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